
COMPUTATIONAL THINKING TEST: DESIGN GUIDELINES AND
CONTENT VALIDATION

Marcos Román González
Universidad Nacional de Educación a Distancia - UNED (SPAIN)

Abstract
We live in a society full of digital and programmable objects. In this context, being code-literate
involves an inescapable requirement for any citizen of the XXI century. We believe that a person is
code-literate when the ability to read and write in the language of computers and to think
computationally has been developed. So it is not surprising that computational thinking (CT) is being
located at the focus of educational innovation as a set of problem solving skills to be acquired by new
generations of students. However, we still lack international consensus on a definition of CT, nor a
clear idea of how to incorporate CT to our education systems at various levels. Similarly, there is a
striking gap about how to measure and assess CT. In reply, this paper presents the design of a
Computational Thinking Test aimed at Spanish students between 12 and 13 years old (grades K-7 &
K-8): we describe the guidelines on which whole test and each of its items have been designed, as
well as the content validation process through expert's judgment procedure. Through this process, the
initial version of the test (40 items length) was depurated to a 28 items version, which is currently
being applied to the target population. Finally, possible limitations of the test and possible concurrency
of the same with other international evidence on computational thinking assessment are discussed.

Keywords: Computational thinking, computational thinking test, code literacy, computer science
education.

1 INTRODUCTION
We live in a digital ecosystem full of programmable objects driven by software [1]. In this context,
being able to handle the language of computers emerges as an inescapable skill, a new literacy,
which allows us to participate fully and effectively in the digital reality that surrounds us: it is about to
‘program or be programmed’ [2]. The term ‘code-literacy’ has recently been coined to refer to the
process of teaching and learning of read-write with computer programming languages. Thus, it is
considered that a person is code-literate when is able to read and write in the language of computers
and other machines, and to think computationally [3]. If code-literacy refers ultimately to a new read-
write practice, the concept of computational thinking (CT) refers to the underlying problem-solving
cognitive process that allows it.

In this framework, it is not surprising that there is renewed interest in many countries to introduce CT
as a set of problem-solving skills to be acquired by new generations of students; even more, CT is
becoming viewed at the core of all STEM disciplines [4]. Although learn to think computationally has
long been recognized as important [5], as computation has become pervasive, underpinning
communication, science, culture and business in our society [6], CT is increasingly seen as an
essential skill to create rather than just consume technology [7]. The recent decision to introduce
computer science teaching from primary school onwards in the UK reflects the growing recognition of
CT importance [8].

However, there is still little consensus on a formal definition for CT, and discrepancy in beliefs of how it
should be integrated into educational programs [9]. Almost ten years ago, in 2006, Jeanette Wing’s
foundational paper defined that CT “involves solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to computer science” [10]. CT’s essence is
thinking like a computer scientist when confronted with a problem. But this first generic definition is
being revisited and specified in successive attempts over the last few years, still not reaching an
agreement. So, in 2008 Wing clarified, “computational thinking is the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a form that can be
effectively carried out by an information-processing agent” [11]. Four years later, this definition is
simplified by Aho, who declares CT as the thought processes involved in formulating problems so
“their solutions can be represented as computational steps and algorithms” [12]. Moreover, in 2011 the
Computer Science Teachers Association (CSTA) and the International Society for Technology in

Proceedings of EDULEARN15 Conference
6th-8th July 2015, Barcelona, Spain

ISBN: 978-84-606-8243-1
2436

Education (ISTE) developed an operational definition of computational thinking that provides a
framework and common vocabulary for Computer Science K-12 educators: computational thinking is a
“problem-solving process that includes (but is not limited to) the following characteristics: formulating
problems in a way that enables us to use a computer and other tools to help solve them; logically
organizing and analyzing data; representing data through abstractions such as models and
simulations; automating solutions through algorithmic thinking; identifying, analyzing, and
implementing possible solutions with the goal of achieving the most efficient and effective combination
of steps and resources; generalizing and transferring this problem solving process to a wide variety of
problems” [13].

Even Google has provided its own definition of CT as “a set of problem-solving skills and techniques
that software engineers use to write programs that underlie the computer applications you use such as
search, email, and maps. However, CT is applicable to any subject (…) Specific computational
thinking techniques include: problem decomposition, pattern recognition, pattern generalization to
define abstractions or models, algorithm design, and data analysis and visualization” [14].

As a synthesis, Grover & Pea have recently contributed with a complete review of the state of the field
[15], highlighting the lack of international consensus on a definition of CT. They conclude that the
following elements are now widely accepted as comprising CT and form the basis of curricula that aim
to support its learning as well as assess its development:

• Abstractions and pattern generalizations (including models and simulations);
• Systematic processing of information; Symbol systems and representations;
• Algorithmic notions of flow of control;
• Structured problem decomposition (modularizing);
• Iterative, recursive, and parallel thinking;
• Conditional logic;
• Efficiency and performance constraints;
• Debugging and systematic error detection

Similarly, there is a striking gap about how to measure and assess CT, fact that must be addressed.
Without attention to assessment, CT can have little hope of making its way successfully into any
curriculum. Furthermore, to judge the effectiveness of any curriculum incorporating CT, measures that
would enable educators to assess what the child has learned need to be validated [15].

Most recent research addressing questions of CT assessment, such as ‘Fairy Assessment in Alice’,
has used either student-created, or predesigned programming artifacts to evaluate students’
understanding and use of abstraction, conditional logic, algorithmic thinking, and other CT concepts to
solve problems [16]. In South Africa, a Computational Thinking Framework (CTF) has been developed
to serve as a foundation for designing and evaluating CT materials (e.g. Light-Bot), and student
assessments [9]. This research group has also studied first year college student performance in a Test
for Computational Thinking [17]; the questions used in this assessment were sourced from the
Computer Olympiad ‘Talent Search’ papers1. In Kentucky University, Walden et al. examine
connections between CT and critical thinking in college students, developing their own CT instrument:
a combination of multiple choice and short answer questions that tests evaluation of simple
algorithms, efficient sorting, quality of digital information storage, and file structures; this instrument is
not verified yet valid or reliable [18]. In Taiwan, Lee et al. assess CT skill among high school and
vocational school students [19], using fifteen tasks from the International Bebras Contest2.

But there is still a lack of tests designed for middle-school students that has been subjected to a
complete validation process. To begin to reply this vacuum, this paper presents the design of a
Computational Thinking Test (CT-test) aimed at Spanish students between 12 and 13 years (grades
K-7 & K-8): we describe the guidelines on which whole test and each of its items have been designed,
as well as the content validation process through expert’s judgment procedure.

1 http://www.olympiad.org.za/talent-search/
2 http://www.bebras.org/

2437

2 METHODOLOGY

2.1 Design guidelines and principles
Our Computational Thinking Test (CT-test) was initially designed (version 1.0 – October 2014)3 under
the following principles:

• Aim: CT-test aims to measure the development level of computational thinking in the subject.
• Operational definition of measured construct: CT involves the ability to formulate and solve

problems by relying on the fundamental concepts of computing, and using logic-syntax of
programming languages: basic sequences, loops, iteration, conditionals, functions & variables.

• Target population: CT-test is designed and intended for Spanish students between 12 and 13
years old (grades K-7 & K-8).

• Instrument Type: multiple choice test with 4 answer options (only one correct).
• Length: 40 items.
• Estimated completion time: 45 minutes.

Each item of the CT-test is designed and characterized in the following five dimensions:

- Computational concept addressed: each item addresses one or more of the following 8
computational concepts, ordered in increasing difficulty: Basic directions (5 items); Loops –
repeat times (5 items); Loops – repeat until (5 items); If – simple conditional (5 items); If/else –
complex conditional (5 items); While conditional (5 items); Simple functions (5 items); Functions
with parameters (5 items). These computational concepts are aligned with ‘CSTA K12
Computer Science Standards’ for grades K-7 & K-8 [20].

- Environment-Interface of the item: CT-test items are presented in any of the following two
environments-interfaces: ‘The Maze’ (31 items); ‘The Canvas’ (9 items).

- Answer alternatives style: in each item, the response alternatives may be presented in any of
these three styles: Visual arrows (8 items); Visual blocks (24 items); Textual (8 items).

- Existence or non-existence of nesting: depending on whether the item solution involves a
script with (29 items) or without (11 items) nesting computational concepts (a concept
embedded in another concept to a higher hierarchy level).

- Required task: depending on which of the following cognitive tasks is required for resolution of
the item: Sequencing: the student must sequence, stating in an orderly manner, a set of
commands (18 items); Completion: the student must complete an incomplete given set of
commands (14 items); Debugging: the student must debug an incorrect given set of commands
(8 items).

See item examples in Fig. 1, Fig.2, Fig. 3 and Fig. 4, detailing their specifications in the five
dimensions.

Fig. 1. Item details: Loop – repeat times; ‘The Maze’; Visual blocks; Yes-nesting; Sequencing.

3 Available in high definition at: https://db.tt/66FJPURK

2438

Fig. 2. Item details: Loop – repeat times; ‘The Canvas’; Textual; No-nesting; Debugging.

Fig. 3. Item details: Loop – repeat until + If – simple conditional; ‘The Maze’; Visual arrows;

Yes-nesting; Completion.

Fig. 4. Item details: Loop – repeat times + Simple functions; ‘The Canvas’; Visual blocks;

Yes-nesting; Sequencing.

2439

2.2 Expert’s judgment procedure
For the content validation procedure of our CT-test, 39 experts were invited to collaborate in order to
provide their valuation of the instrument. Finally, 20 experts accepted; this panel of experts has the
following features: 14 men and 6 women; average age 36,9 years; belonging to the following
professional groups (you can belong to more than one) as seen in Table 1.

Table 1. Professional profile of our panel of experts

Professional group Nº of experts

K-7 to K-10 Computer Science Teachers (Middle School) 11

K-11 to K-12 Computer Science Teachers (High School) 8

Job Training Computer Science Teachers 5

University Computer Science Teachers 5

Winners Premios Apps Fundación Telefónica4 (App Development Contest) 4

Members of Programamos.es5 3

Members of Computer Science Teachers Association6 (Valencia, Spain) 3

Our CT-test (version 1.0 – October 2014) was sent to the 20 accepting experts, and following
valuations were required:

• For each of the 40-items: difficulty level (Likert scale of ten points); relevance to measure CT
(Likert scale of ten points); whether to include or not the item in the final version of the CT-test;
open suggestions for item’s improvement.

• For each of the 5-dimensions: adequacy to have considered the dimension for the CT-test
design (Likert scale of ten points); whether to consider or not the dimension in the final CT-test
design; open observations about the dimension.

• For the whole instrument: valuation on the length of the test (Likert scale of five points) &
ideal length for final version; valuation on the estimated completion time of the test (Likert scale
of five points) & ideal completion time relative to ideal length; overall valuation (Likert scale of
ten points); and open final comments.

Valuations were collected through three online forms in Google Drive7

3 RESULTS
About the length of CT-test (v. 1.0), 40 items: 11,8% of the experts said is ‘very long’; 58,8% said is
‘quite long’; and 29,4% said is ‘appropriate length’. About the estimated time of completion (45
minutes) in relation to the originally scheduled length scale (40 items): 70,6% of the experts indicated
is ‘very short’ or ‘quite short’ time; 17,6% indicated ‘appropriate time’; and 11,8% said ‘quite long’ time.
Ideal length given by the experts for final version of CT-test was 28,3 items (Mean) or 30 items
(Median); and ideal completion time relative to ideal length was 52,5 minutes (Mean) or 45 minutes
(Median).

Difficulty level, in relation to the target population (12 & 13 yr.), perceived by experts to each item is
shown in Fig. 5. Relevance to measure CT perceived by experts to each item is shown in Fig. 6. And
whether to include or not each item in the final version of the CT-test, expressed as an acceptance
rate, is shown in Fig. 7.

4 http://www.fundaciontelefonica.com/
5 http://programamos.es/
6 http://www.apicv.es/
7 http://goo.gl/6p1gcR http://goo.gl/JSrHSD http://goo.gl/xCZlU8

2440

Fig. 5. Difficulty level perceived by experts to each item.

Fig. 6. Relevance to measure CT perceived by experts to each item.

Fig. 7. Acceptance rate by experts to each item.

2441

From the analysis of the above results, we can state: CT-test (v. 1.0) presents a growing difficulty
along its items, something recommended for any instrument that aims to measure skills, covering the
entire range of perceived difficulty (from 1 to 10); items have a high rate of acceptance by experts, at
around 80-90%, although with a slight slope to the last group of items, perhaps because of its undue
hardship for the target population; items have a high relevance for measuring CT, albeit with a slight
increase towards the last group of items (where the most complex computational concept measured:
‘Functions with parameters’), what advises to keep these items for a future version of the instrument
aimed to an older population.

Moreover, considering the suggestions and comments of the experts to different items and
construction dimensions of the instrument, the following decisions to refine the initial version of the
CT-test are taken:

• Remove the latest group of 5 items corresponding to computational concept ‘Functions with
parameters’ by its excessive complexity for the target population.

• Dispense from ‘Textual’ answer alternatives style; whereas visual styles (arrows or blocks) are
most appropriate for the target population.

• Reformulate the items that require ‘debugging’ of an erroneous sequence of commands: show
the code only once, and on the same note 4 options that the wrong step can be found.

• Include a hint about the initial direction of the stroke in ‘The Artist’ interface.
• Introduce nesting only after entering corresponding computational concept without nesting;

eliminate excessive nesting (double and triple nesting).
• As is suggested to reduce the length of the instrument and each computational concept is

approached by a group of five items, we delete or revise the item with the lowest acceptance
rate of each group.

• Include at the beginning of test, brief instructions and three examples that serve to familiarize
students with the working environment.

Applying the decisions above, Fig. 8 shows how an item from CT-test version 1.0. (See Fig. 2) was
revised for CT-test version 2.0.

Fig. 8. Revision of an item (see Fig. 2.) for CT-test version 2.0.

As a result of this depuration process was developed CT-test (version 2.0 – November 2014)8 of 28
items in length, which is currently being implemented in large samples of the target population through
an online form9.

8 Available in high definition at: https://db.tt/6hg2seLu
9 http://goo.gl/IYEKMB

2442

4 CONCLUSIONS
So in this paper we have submitted the content validation process through expert’s judgment
procedure of our CT-test. As a result, the initial version (CT-test 1.0) of 40 items in length has been
refined into a final version (CT-test 2.0) of 28 items. Currently, the CT-test is being applied to large
samples of the target population: students between 12 and 13 years old (grades K-7 & K-8) with the
aim of building rules, scales and percentiles corresponding to that population. Additionally, we are
applying the CT-test on smaller samples of the immediately lower grades (K-5 & K-6) and above (K-9
& K-10) with a view to properly position the floor and ceiling of the instrument; and to validate the
hypothesis of CT’s evolutionary development.

The CT-test is undergoing therefore a complete process to demonstrate its reliability and validity. As
sources for concurrent validity of CT-test, we are using two types of measures: a) measures already
validated from variables close to CT, such as logical reasoning, problem solving, and perceptual and
attentional skills; b) CT alternative measures such as a selection of items from the Computer
Olympiad ‘Talent Search’ or the International Bebras Contest, already mentioned in the introduction.
As sources of predictive validity, we intend to correlate scores on the CT-test with the future
performance of students in ‘K-8 Intro to Computer Science’10 course from Code.org, and with the
quality of their future products made with Scratch (objectively measured by ‘Dr. Scratch’11 tool).

Some of the possible purposes to which CT-test can be assigned after completing its validation
process, could be: pre-test measure of initial CT level in students; early detection of students with
special skills for programming tasks, or with special needs in this regard; evaluation of curricula that
aim teaching and learning computer science; academic and professional orientation of students
toward STEM disciplines.

Finally, by applying the Computational Thinking Framework (CTF) [9] to our instrument, we note as
obvious limitation thereof, as CT-test is composed entirely of closed multiple choice items, it only
measures CT at their lower levels of complexity (‘Recognize’ and ‘Understand’). An instrument
intended to measure CT also at higher levels of complexity (‘Apply’ and ‘Assimilate’) should include
items which require not only recognize but also evoke the correct algorithm (as, indeed, suggested
one of our experts), and open complex problems whose resolution require students transfer creatively
computational concepts. In the same vein, we wonder whether our test is really a CT-test or ‘just’ an
AT-test (Algorithm Thinking Test).

REFERENCES
[1] Manovich, L. (2013). Software Takes Command. New York: Bloomsbury.

[2] Rushkoff, D. (2010). Program or be programmed. New York: OR Books.

[3] Román, M. (2014). Aprender a programar ‘apps’ como enriquecimiento curricular en alumnado
de alta capacidad. Bordón. Revista de Pedagogía, 66(4), 135-155.

[4] Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). Computational thinking. ACM SIGCSE
Bulletin, 39(1), 195-196.

[5] Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York; Basic
Books.

[6] Howland, K., & Good, J. (2015). Learning to communicate computationally with flip: A bi-modal
programming language for game creation. Computers & Education, 80, 224-240. doi:
http://dx.doi.org/10.1016/j.compedu.2014.08.014

[7] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.

[8] Brown, N. C. C., Kölling, M., Crick, T., Peyton Jones, S., Humphreys, S., & Sentance, S. (2013).
Bringing computer science back into schools: Lessons from the UK. Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, 269-274.

10 http://studio.code.org/s/20-hour
11 Beta version: http://drscratch.programamos.es/

2443

[9] Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational
activities: An evaluation of the educational game light-bot. Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education, 10-15.

[10] Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

[11] Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-
3725. doi: http://dx.doi.org/10.1098/rsta.2008.0118

[12] Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-
835.

[13] CSTA & ISTE (2011). Operational Definition of Computational Thinking for K–12 Education.
Retrieved from http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

[14] Google for Education (2015). Exploring Computational Thinking. Retrieved from
https://www.google.com/edu/resources/programs/exploring-computational-thinking/

[15] Grover, S., & Pea, R. (2013). Computational thinking in K–12. A review of the state of the field.
Educational Researcher, 42(1), 38-43.

[16] Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance
assessment: Measuring computational thinking in middle school. Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education, 215-220.

[17] Gouws, L., Bradshaw, K., & Wentworth, P. (2013). First year student performance in a test for
computational thinking. Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference, 271-277.

[18] Walden, J., Doyle, M., Garns, R., & Hart, Z. (2013). An informatics perspective on
computational thinking. Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, 4-9.

[19] Lee, G., Lin, Y., & Lin, J. (2014). Assessment of computational thinking skill among high school
and vocational school students in Taiwan. World Conference on Educational Multimedia,
Hypermedia and Telecommunications, 2014(1), 173-180.

[20] CSTA (2011). K–12 Computer Science Standards (Level 2). Retrieved from
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

2444

